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Abstract

The problem of how to place students in a sequence of hierarchically related

courses is addressed from an (empirical) Bayesian point of view. Based on a

minimal set of assumptions, it is shown that optimal mastery rules for the courses

are always monotone and a nonincreasing function of the scores on the placement

test. On the other hand, placement rules are not generally monotone but have a

form depending on the specific shape of the probability distributions anc utility

functions in force. The results are further explored for a class of linea; utility

functions.
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Some Decision Theory for Course Placement

A course placement problem is met when students w.rth different aptitudes enter an

educational program offering classes in the same domain at several entrance

levels. The typical solution of the problem is to administer an aptitude test to the

students to decide at which level they should start. It is the purpose of this paper

to demonstrate how (Bayesian) decision theory could be used to optimize such

placement decisions.

For simplicity, the case of two courses is considered where the first

course has a lower entrance level than the second course. It is assumed that an

aptitude test is administered to decide whether the students have to take the first

course or can go straight to the second course. In addition, it is assumed that the

first course ends with a mastery test to decide whether those students taking the

first course have learned its content and can be admitted to the second course. A

flowchart of the problem displaying the temporal relationship between the tests and

courses if given in Figure 1.

[Figure 1 about here)

To derive optimal decision rules for the placement and mastery decisions,

(Bayesian) decision theory is a natural framework. Examples of a decision-

theoretic treatment of the mastery problem are found in Hambleton and Novir!,

(1973), Huynh (1976, 1977, 1982). Huynh and Perney (1979), van der Linden

(1980, 1990), and van der Linden and Mellenbergh (1977). The placement

problem has been addressed in Sawyer (submitted) and van der Linden (1981).

The novelly in this paper is that optimal rules for the two decisions problems are

f;
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derived simuttaneously. The advantages of a simuttaneous approach have been

spelled out in Vos (1994,1995). For the present problem, they will be discussed

later in this paper.

Notation

Sampling of students from a population P is assumed. The observed

scores on the aptitude or placement test, administered before the first course, will

be denoted by a random variable X. Likewise, the observed score on the mastery

test is denoted by Y whereas the true score on this test is denoted by T. For ease

of exposition, the variables are assumed to be continuous.

For each possible value of the observed score, the decision to assign the

students either to Course 1 or to Course 2 has to be made. A placement rule can

therefore be denoted either by the set of x values A1=(x:Course 1) or its

complement A2={x:Course 2). Likewise, a mastery rule can be represented by the

set B1(x)=N:x,Fail) or rts complement B2(x)=(y:x,Pass). Note that the mastery rule

is allowed to depend on the score on the placement test, X=x. This type of

mastery rule presents the most general approach. For example, it is possible that

for candidates in Course 1 with a high score on the placement test a different

mastery rule is optimal than for candidates with low scores. The idea to allow

mastery rules to depend on the scores on a previous placement test is congenial

with the idea developed in Bayesian statistics that the use of collateral information

generally improves the Quality of decision making. On the other hand, as will be

shown below, constraining optima! rules B1(x) or B2(x) to be the same sets of y

values tor each possible value x requires additional conditions on the test score

distributions
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Distributional Assumptions

It is assumed that if all students in P are assigned to Course 1, the trivariate

distribution of their scores (X,Y,T) can be represented by a density function

f1(x,y,t). If, on the other hand, all students are assigned directly to Course 2, the

distribution is assumed to be represented by a density function f2(x,y,t). For future

reference, it is understood that the conditional distributions of T given (X=x,Y=y), T

given X=x, Y given X=x, and (Y,T) given X=x are denoted by pi(tlx,y), qi(tlx),

hi(ylx), and ri(y,t I x), i=1,2, respectively. The marginal distribution of X is denoted

by gi(x). Without loss of generality, it is assumed that all density functions are

nonnegative everywhere. As usual, cumulative distribution functions will be

denoted by capitals.

The following assumptions about t1(x,y,t) seem plausible:

g1(x)=g(x). =1,2: (1)

P1ttlx,y) is decreasing in x and y for all values of t, 1=1,2: (2)

H1(ylx) is decreasing in x for all values of y, 1=1,2: (3)

0,01x) is decreasing in x for all values of t, i=1,2. (4)

The first assumption is realized if the placement test is administered before either

course is taught--a condition automatically met in regular course placement

problems The last three assumptions require the conditional distributions of the

observed and true mastery test scores to be stochastic increasing in their

BEST COPY AVAILABLE
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conditioning variables. These conditions can be expected to be met if the

placement and mastery tests are well designed, that is, if they are constructed

such that high scores on the placement test tend to coincide with high observed

and true scores on the mastery test. In van der Linden and Vos (in press), 4 is

proved that conditions as in (4) follow from the assumptions in (2)-(3).

Several other assumptions could be specified to define a course

placement problem with well-designed tests and courses. For example, for the

conditional cumulative distributions functions of (Y,T) given X=x, 1:11(y,tlx), 4 seems

reasonable to expect that:

R.(y tlx) increases in i for all values of x, y, and t. (5)

This condition states that the probability of high observed and true scores on the

mastery test given a score on the placement test is larger for students assigned to

Course 1 than for those assigned directly to Course 2. In other words, no matter

the aptitude scores of the students,. following Course 1 will tend to have a positive

effect on their observed and true mastery of as subject matter. However, this and

other obvious properties are not needed to derive the results presented in this

paper. For a more general treatment of the properties of stochastic order in

multivanate distributions of test scores, see van der Linden (submitted).

Utility Structure

The usual approach is to define the utilities involved in mastery decisions as a

function of the true score underlying the mastery test. Since mastery decisions are
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made only for students assigned to Course 1, lt seems logical to also view the

utilities involved in the outcomes of this decision as a function of the true mastery

score. As tor Course 2, the posltion is taken that the decision to assign students

directly to this course can be viewed as an advanced mastery decision based on

the aptltude test as a predictor of the students' mastery scores atter Course 1. It

follows that the true mastery score can be used as the common criterion to

measure the utilities involved in all decisions in the simultaneous placement-

mastery problem addressed here. More in particular, the following utillry functions

are defined:

Assignment to Course 1 (x E A1) and Fail (y EB1(x)): u
1
(t);

Assignment to Course 1 (x E A1) and Pass (y E B2(x)): u2(t): (6)

Assignment to Course 2 (x E A2): u*(t).

As for the shape of the utility functions. it is assumed that:

uilt1 is monotonically decreasing in t; (7)

ti2(11 and u *(t) are monotonically increasing in 1. (8)

Condition (71 can be defended pointing at the fact that the decision to have a

student fail atter Course 1 has less utility, the higher the true mastery level of the

student The reverse is true for the other two possible decisions: both for the

actual mastery and the 'advanced mastery decision, it should hold that the

A ()
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outcome has larger utility, the higher the true mastery level of the student.

However, the actual mastery decision involves the additional costs of teaching

Course 1 which are missed for the 'advanced mastery' decision. For traditional

group-based instruction, these costs can be assumed to be a constant

independent of 1 Hence,

u*(t)u2(t) for all values of t, (9)

As yet, no parametric form will be assumed for the utility functions. The

intention is first to further explore the features of the problem as well as the shape

of its optimal decision rules. Then a parametric form for the utility functions will be

introduced. In doing so, two addMonal assumptions about the nature of the

difference between u
2
(t) and u *(t) will be made.

Formalization of the Problem

The condition on the utility functions in (9) suggests that if utilities were the only

concern, the best decision would be to always assign the students to Course 2.

This action represents the largest utility since the constant costs involved in

leaching the first course are missea However, it the decisions had to be based

only on the test score distribut.ons, the best decision would always be to assign

students to Course 1. As the condition in (5) shows, no matter the score of the

students on the placement test, the probability of having high observed or true

mastery of the subject matter taught in this course increases when attending It

Therefore, ii mastery of Course 1 is a prerequisite for success in Course 2,

BEST COPY AVAILABLE
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students who attend Course 1 will tend to be more sucr;essful in Course 2.

Obviously, a crtterion is needed to solve this dilemma between utility and

probability. In this paper, the Bayes criterion of maximum expected utility is used.

For the utility functions and distributions defined above, the expected utilfty

associated with the simultaneous problem considered in this paper can be written

as:

E[U(Ai,Bi(x))1 (ui(t)ii(x,y,t)cit dy + 1u2(t)fi(x,y,t)cttdy}dx

A1 B1(x) R 82(x) h

r ru*(02(x,y,t)dldydx. (10)

A2 h h
It is assumed that the integrals in (10) converge. Formally, the problem is now to

find sets A1 and B1(x) for which the expression in (10) is maximal.

Moving to posterior densities and taking expectations, (10) can be written

as:

E[u(A1,B2(x))) = 1 (El[ul (r) ix] - E2R,*(THX1

A1

+ I E11u2(T) u1(T) lx.y1h1(y dy} g(x) dx

E3ix)

+ E2[u*(T)), (11)

where the subscripts at the expectation signs index the distributions with respect to

which the expectation is taken. The problem is now to find sets A1 and B2(x) for

which (11) is maximal. Note that the last term of (11) is a constant independent of
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A1 and B 2(x) and may be ignored. Since the sample spaces of X and Y are not

constrained in any way, the optimal sets can be found by first maximizing the

second term over all possible sets of y values and next maximizing the sum of the

first two terms over all possible sets of x values.

General Solution to the Problem

The general results in this paper are presented in the form of two propositions.

The first proposition states that under the conditions given above the optimal

mastery rule is always a cutting score on the mastery test score Y which is a

decreasing function of the placement test score X=x. The second proposition

states that the form of the optimal placement rule does not necessarily have the

form of a cutting score on the placement test.

Proposition 1, Under conditions (1)-(3) on the posterior distributions of T given

(X=x.Y=y) and Y given X=x, 11 holds tor the utility functions in (7)-(8) that the

optima! sets B2(x) are intervals tycix),...), where y(x) is a decreasing function of

x.

Proof. From (7)-(8i it follows that u2iti-u1(1) is increasing in t whereas the condition

in (2) stales that the distribution of T given (X=x,Y=y) is stochastic increasing in

the two conditioning variables From a well-known theorem for such distributions

(Lehmann, 1986, p.116), it follows that E1fu2(T)-u1(T) I x,y] increases in x and y.

Let T lx,y) denot, this expectation, and consider the relation {(x,y)l (X,y)=0). This

relation defines a function y=yc(x) which is decreasing in y (van der Linden & Vos,
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in press, Lemma 4). Hence, for each x there exists a value yc(x) such that T (x,y)

is nonnegative for y.4c(x) but negative for yqc(x). Since the integral of t (x,y)

over h1(ylx) is maximal if it is taken over all values of x for which the integrand is

nonnegative, it follows that the optimal sets B2(x) are the intervals (yc(x),...].

Proposition 2. Under the conditions stated above it does not hold generally that the

optimal set A1 is monotone, that is. there always exists a cutting score xc such

that Al=(..,xcl is optimal.

Proof. From (4) and (7) it follows that E1[u1(T)lx] decreases in x whereas (4) and

(8) imply that E2(u (T)1x) increases in x. Therefore, the integrand in the first term

in (11) decreases in x. Following an argument in van der Linden and Vos (in

press), it is now proved that the integrand in the second term in (11) is

nondecreasing in x. Substituting B2(x)= Eyc(x),..) into (11), since t (x,y) is

nonnegative for yyc(x) and y(x) is decreasing in x, it holds for any x2>x1 that

.1 tix2,y)h1(yix2)dy t(x1,y)h1(y1x1)dy >

Yc(x2) Yc(x1)

t(x2.01(y1x2)dy 1 tlx1,0h1(01)dy >

ycix1) yc(x1)

.1 t(x1.)1)[h(1)cx2) hl(y.x1);dy =

Yc(x1)

I 9(y)Eh1(y1x2)-h1(y ix1))0y. (12)

r 31 COPY AVAILABLE
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where 9(y) Ityc(x1)..)(y)t(x1,y), and Ityc(xj),c0)(y) is an indicator function

which takes the value 1 if y E [h(x1),00) and the value 0 otherwise. By

definition, 9(y) is a nondecreasing function of y, and from (3) it follows that the

second term in (11) is nondecreasing indeed. Now it depends on the rate of

change of the first and second terms in (11), and hence on the specific form of the

utility functions and score distributions whether the integrand in the integral over x

in (11) is a monotonically decreasing function of x. Therefore, the optimal set A/

does not generally take a monotone form.

Proposition 2 implies that for some utility functions and distributions, an

optimal set A1 may consists of two or more non-adjacent intervals of placement

test scores. Generally, it does not hold that if a student with a certain aptitude is

assigned to Course 1, the same should apply for all students with lower aptitudes.

The result goes against the prevailing practice of using placement rules in the form

of a single cutting score on a test. The explanation of this 'anomaly is the

dilemma between utility and probability referred to in the previous section. Utilities

and probabilities are different quantities. If for a given aptitude level it is known that

the expected increase in mastery due to attending Course 1 offsets the increase in

utility involved in directly attending Course 2, no inferences as to other aptitude

levels are possible wrlhout knowing the specific forms of the utility functions and

probability distributions.

Calculation of Optimal Rules

From the proof of Proposition 1 it follows that the optimal mastery function

is the decreasing function y=yc(x) defined by

1 o
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E1[u2(T)-u1(T)ix,y) = 0. (13)

Substituting y(x) into (11), maximal expected utility is obtained if A1 is taken to be

the set of .x values for which the integrand of the outer integral is nonnegative.

That is, the optimal set A1 is given by:

A1 = {x: Ei (T) Ix] - E2[u *(T) ix]

+ E1[u2(T)-u1(T) lx,y)h1(y lx)dy 0).

y(x) (14)

The optimal set in (14) can be found using a surtable method of numerical

integration. As in practice observed test scores are always discrete, a simple

approach is to substitute all possible test scores into the expression in (14) to find

the subset for which it is nonnegative. However, to be able to do so, the

regression functions in (14) must be estimated. The following section shows how

to deal with the problem if linear utilities and regression functions can be assumed

to hold

Linear Utility Structure

For the utility functions in (6), the following linear structure is adopted:

u1(1) = bi(tc-1)+ al ,

u2(t) b2(1-tc)+ 82. b20,

(15)

(16)
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u t(t) = b t(t-tc)+ a , b*>0, (17)

where tc is assumed to be a threshold value on the true mastery scale which

separates true masters from true nonmasters. If such a threshold does not exist,

the above functions should be reparameterized absorbing tc into the intercept

parameter. Note that the slope parameters are required to be larger than zero to

meet the conditions in (7)-(8). Also, generally, al, a2, a < 0 because these utility

constants represent the constant parts of the costs involved in teaching Course 1

and/or Course 2. It is reminded that this paper views the decision to assign

students to Course 2 as an advanced mastery decision. Hence, utility functions

(16) and (17) have the same parameter structure but may have different values for

their parameters to deal with the specifics of the application. An example of the

use of these utility functions will be given later in this paper. Techniques to elicit

utility functions for placement decisions have been addressed in Sawyer (1994,

April).

Substituting utilrty functions (15)-(17) Into the expression for the expected

utility in (11) and using the result in Proposition 1:

E[u(A1,,,c(x)), = roi +b *)1c + (al -a ) blE 1 (T Ix) - b E2(T Ix)

4.1

1 (b1 +b2)1c + (a2 -a1) + (b1 +b2)E1(T lx,y)h1(y1x)dy}g(x)dx

Yc(x) (18)

From the general solution in (13) it follows that the optimal mastery function is

defined by.

rIEST COPY AVAILABLE
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-(bi +b2)tc + (a2 -a1) + (bi +b2)Ei (T Ix,y) = 0 ,

whereas (14) implies that the following set of x values is optimal:

A1 = (x: (bi +b t)tc + (al -a *) (T Ix) b 5E2(T Ix)

[ -(bi +b2)1c + (a2-a1) + (b1 +b2)Ei (T Ix,y) hi (y ix)dy 0).

yc(x)

14

(19)

(20)

Linear Regression

If linear regression of T on X and Y can be assumed, that is, if ft holds

that

El(T ix,y) = aTXY1 PTXY1x YTXY1Y,

the optimal mastery function is:

(21)

-1 -1
yc(x) = Etc (a2-a1)/(b1+b2) -aTXY

JYTXY1 (I3TXY17TXY 1
)x (22)

Note that this function is linear in x with a slope parameter equal to -r-ATXYYTXY
-1

Since families of conditional distributions with the property in (2) have nonnegative

covariances between the random variable and the conditioning variables (van der

Linden, submitted), it follows that Pi Txy and y Txy are nonnegative, and thus that

the function in (22) is nondecreasing indeed.

As classical test theory shows:

lo



Ei(Tlx) = Ei(Ylx).

The former can thus be wrrtten as:

Ei(Tlx) = ayxi + 13yxix.

Substituting (21) and (23) into (20), the optimal set A1 is:

A1 = (x: K1 - (bl [3yxl

with

b *13YX2 )x

Course Placement
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(23)

+ [K2 + (b1 b2)(13TYX1x ITYX1y)hi (y I x)1dy 0), (24)

Yc(x)

K1

K2 = (b1 + b2)(aTXY1 tc) (a2 a1),

(25)

(26)

and where y(x) is given by (22).

Classical test theory shows that the regression parameters in (22) and

(24)-(26) are simple functions of the mean of Y, the variances of X and Y, the

correlation between X and Y. and the reliabilrty of Y. If X and Y are standardized,

the relevant expressions are. ayX1 = O. (1,-YX1 = PXYi, aTXYi = 0, PTXYi =
2 2 2

pvel(1 -pyyl)/(1-pvei), and rxy, (Pyyl-Pxyi)/(1-pxyi) (Lord & Novick.

1968, chaps. 2 and 12).

Substituting the above results into (22), the following form for the optimal
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mastery function is obtained:

2

1 -PXY1
)

PXY1(1-M1))
xYc(x) = (tc - (a2-a1)/(b1+b2))(

2 2

Pre1 -PXY1 PyY1-PXY1 (27)

The same substitution into (24) gives:

with

A1 = (x; K1 K3 x + (K2 + K4 x + K5 y)h1(y1x)dy 0), (28)

Yc(x)

K1 = (b1 + bt)tc + al at, (29)

K2 = -(b1 + b2)tc + a2 al , (30)

K3 = bipxyi b tpXy2. (31)

K4 = (b1 b2)pXy1(1 MO(1 P2X1,1)'
(32)

2 2
K5 = (b1 b2)(pyy1 Pxy1m1Ft PX1111'

(33)

To use the above decision rules the conditional density functions h1(y I x)

have to be estimated from the data. Fitting a well-chosen parametric form for these

densities is an obvious approach to the estimation problem. If h1(y I x) is chosen

to be the normal density function, an appropriate change of variable in the integral

and use of the fact that for the c.d.f., (1)(u), it holds that 10(u)-(1+exp(1.7u)]-1
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< 0.01 uniformly in u (Lord & Novick, 1968, sect. 17.2) show that (28) is equal to:

with

A1 = (x: K1 - K3 x + (K2 + K6 x) [1 + exp (1 7
Yc(x)-PXY1x

II
-1

2-pxyl

+ K7 exp (- 1 (Yc(x)-PXY1x
)2 ) 0), (34)

2 2xyi

K6 = K4 + PXY1 K5, (35)

2
K7 = (271) -1/2 (1 -pxy1)K5. (36)

Obviously, the second and the fourth term in lett-hand side of the

inequality in (34) are monotonically decreasing in x. Since the slope of y(x) in (27)

can never be positive, the second factor of the third term is also monotonically

decreasing in x. However, the first factor of this term is increasing in x. Thus it

depends on the relative acceleration of these two factors whether or not the left-

hand side of the inequality is monotonically decreasing in x and allows for an

optimal placement rule of the form A1 (--, xe).

Numerical Examples

A few numerical examples were calculated to shed some light on the behavior of

the optimal placement rule and mastery function in (34) and (27) for several values

of their parameters. The following six cases were addressed:

9 I
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Case 1: Standard parameter values. Correlations between cognitive

predictor variables and college grades typically range from 0.50-0.60 (Etaugh,

Etaugh & Hurd, 1972; see also Schoenfeldt & Brush, 1975). A choice of 0.55 for

pxyi seems therefore realistic. The same authors found an average reliability for

the grade-point average over a large variety of program equal to 0.689. Since the

average number of courses per program was 5.23, the reliability of a single grade

is generally lower. On the other hand, tests for remedial courses typically are more

carefully constructed than tests for regular courses. Based on these

considerations, a choice of pyy1=0.60 was made. The cutting score tc was set

equal to 0.5, which is a value 0.5116.60 standard deviations larger than the

average score on the mastery test. The values of the utility parameters al, a2, and

a* in (15)-(17) had to be selected relatively to the scale oi 1. It was assumed that

the costs involved in additionally teaching Course 1 were equal for the students

who failed and those who passed the mastery test, that is, a1=a2. On the other

hand, sending students directly to Course 2 does involve only the costs of teaching

Course 2. Therefore, utility parameter a* was set larger than the common value

of al and a2. As for the values of the :lope parameters b1 and b2 in (15)-(16),

failing the mastery test for high values of t was assumed to be less serious than

passing the test for low values. This choice is justified if the program is structured

such that a retest is offered to those students who fail the test but those who pass

are allowed to continue without a further check oi their true mastery levels. Hence,

b 1<b2-
As the placement decision is considered as an advanced mastery decision

in this paper, the value of its slope parameter was set equal to value for the actual

mastery decision, that is, b2=b*. In summary, the following set of standard values

for the parameters in (27) and (34) was assumed:

BEST COPY AVAILABLE



PXY1 = PXY2 =0.55;

pyri =0.60;

tc=0.50;

=a2=-1.0;

a =-0.50;

b1=1.0;

b2=b*=1.2.

Case 2: Higher costs of teaching Course 1. It was assumed that the

constant costs involved in the teaching of Course 1 were higher than the standard

value in the previous case. Therefore, the common value of the parameters al and

a2 was lowered to -1.50. All other parameters were kept at their standard values.

Case 3: Utility less sensitive to true mastery level. To simulate the case of

the utilities associated with the various decision outcomes being less sensitive to

differences between the true mastery scores, the values of the three slope

parameters were halved: b1=0.5 and b2=b*=0.6. All other parameters were kept

at their standard values.

Case 4: Adaptive instruction. If Course 1 is an individualized course in

which the intensity of instruction is adapted to the aptitude level of the students,

the savings in instructional costs involved in assigning students directly to Courses

2 may decrease as a function of t. To simulate this case, the values of b1 and b2

were raised to 1.2 and 1.4, respectively, but all other parameters were kept at their

standard values still.

Case 5: Higher predictive validity of placement test. Next, it was

supposed that a better placement test was available than the test studied in Case

1 Therefore, pxy I was raised to 0.70. The height of this value must be judged

relatively to the reliability of the mastery scores which was kept at its standard
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value (as were the values of all other parameters).

Case 6: Higher reliability of mastery test. To assess the effect of a higher

reliability of the mas;ery scores on the optimal placement and mastery rules,

pyyi was raised to 0.E5, leaving all other parameters at their standard values.

Figure 2 gives the plot of the optimal mastery function y(x) as a function

of

[Figure 2 about here]

x. It appears that the function decreases by an amount of 0.74 for an increase of

the placement score X equal to one standard deviation. In the second part of

Figure 2, X (x) is the left hand-side of the inequality in (34) plotted as a function of

x. To find the roots of

[Table 1 about here]

X (x)=0, Newton's method, as implemented in Mathematica's Find Root command

(Wotfram, 1993) was used. Table 1 lists the results for the present and the

following cases. Only one root was found, at x=0.592. Thus, a monotone

placement rule exists for this case.

The plots for all other cases are given in Figure 3. For higher costs of

teaching Course 1 (Case 2), the root of X (x) moved down to x=0.094, which, as

expected. implies

!Figure 3 about here]
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that fewer students are assigned to Course 1. For utilities less sensitive to
changes in the true mastery level t (Case 3), X(x) was again found to cross the
horizontal axis only once, this time at x=0.092. Making the instruction in Course 1
adaptive to the mastery levels of the students (Case 4) resufted in the existence of
two cutting score on the placement, one at x=0.654 and another at x=5.455. Given
the distribution of X assumed in this example, the second cutting score can be
ignored for practical reasons. A higher validity of the placement test for the
examinees assigned to Course 1 (Case 5) resulted in an optimal mastery function
running much steeper because the prediction of the mastery based on the scores
could now be based on more valid placement scores. The placement rule was
nonmonotone again: two cutting scores were found, one at x=0.442 and the other
at x=2.778 implying that examinees with lower and very high placement scores
had to be assigned to Course 1 and the others to Course 2. Finally, for a higher
reliability of the mastery test for the students assigned to Course 1 (Case 6), the
relative importance of the placement test as a predictor of the true mastery level
went down substantially, and the optimal mastery function became a more
horizontal function of the placement score. X (x) now crossed the horizontal axis
only at x=0.746.

Concluding Remarks

One of The advantages of optimizing placement and mastery decisions
simultaneously is that more realistic utility structures are possible. For example, the
point of view taken in this paper that placement decisions are in fact advanced
mastery decisions could never have been translated into a utility structure if the
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two decisions were treated separately. Another advantage is that the placement

scores can be used as collateral information to improve the mastery decisions. The

example showed that for a linear utility structure the behavior of the optimal

placement rule and mastery function was realistic for various changes in the

sensitivity of utility to true mastery level, the adaptrvity of the instruction as well as

the validity and reliability of the placement and mastery tests, respectively.

The question can be raised under .what conditions the optimal cutting

score on the mastery test is a constant independent of the score on the placement

test rather than the decreasing function defined by (13). From (11) it immediately

follows that if

h 1(ylx) = h 1(y) for all x, (37)

the inner integral is only a function of y and the mastery rule becomes independent

of X=x. If (37) is satisfied, it holds that 13-rxy=0, and the optimal mastery function

under linear regression in (27) reduces to its first term which is a constant indeed.

However, (37) represents the case in which the aptitude test nas no predictive

validity whatsoever as to the scores on the mastery test. li is doubted whether

such tests could ever play a significant role in placement decisions. In a sense, it

has thus been demonstrated in this paper that placement decisions can only be

based on valid aptitude tests if they involve optimal mastery rules which are a

decreasing function of the apIrtude scores.

21)
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Table 1

Roots of X (x) for Cases 1 throuqh 6
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Case Roots of X (x)

1 0.592

2 0.094

3 0.092

4 0.654 5.455

5 0.442 2.778

6 0.746
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Figure 1.

Figure 2.

Figure 3.
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Figure Captions

Flowchart of a two-course placement problem with

a mastery test.

Optimal placement rule and mastery function for

standard set of parameter values (Case 1).

Optimal placement rules and mastery functions for

Cases 2 through 6.
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